CALCULATION OF HEAT TRANSFER THROUGH A
POROUS MULTILAYER VACUUM INSULATION
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A system of differential equations describing heat and mass transfer under steady-state con-
ditions in porous vacuum ingsulations is obtained and the method of their solution is discussed,
The effect of various factors on heat transfer by gases in such porous media is shown,

An analysis of the mechanism of heat transfer in multilayer vacuum insulation consisting of aluminum
foil and glass interlayers showed that, with free laying of the insulation, the transfer of heat by residual gas
molecules located between the layers of insulation constitutes an appreciable portion (up to 70-80%) of the
total heat flux even at a pressure below 1-107%-1.10-¢ N/m? in the space surrounding the insulation 1, 2].
The presence of residual gas in the layers of insulation is due to the dynamic equilibrium of the processes
of evacuation and of gas liberation from the surfaces of the insulating materials,

At a pressure around the insulation of less than 1.1072 N/m? the pressure inside it is usually no
higher than 1 N/m? [1, 2, 8], Since the distance between individual surfaces in such insulation is less than
0.5 mm, the flow of gas through porous insulation is molecular in nature, If follows from the kinetic gas
theory that, for a molecular mechanism, the heat transfer by a gas between two adjacent surfaces is pro-
portional to its pressure [3]:
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The gas pressure in the insulation layers can be reduced both by decreasing the evolution of gas from
the insulating materials and by improving the conditions of their evacuation by constructional methods, The
latter includes perforation of the reflecting screens or their manufacture in the form of porous structures,
for example, from metallic or metallized fibers [4, 5]. It is completely obvious that the packing material
between the screens should also have good permeability for gas molecules, The insulation produced by such
methods can be regarded as a porous structure permeable for gas in a direction perpendicular to the sur-
face of the gcreens,

Insulation with perforated screens can be regarded as a porous medium only when the distances be-
tween the holes are sufficiently small (at least commensurable with the distances between screens) so that
its gas permeability is comparable to the gas permeability of the fibrous packing material, It should be
noted, however, that the construction of the reflecting screens in this case should be such that the transmis-
sion of radiation by them is minimum,

It is known that in the insulations being considered three modes of heat transfer — radiation, conduc-
tion by the gas, and conduction by the solid — act simultaneously, the fraction of each varying from screen
to screen, Inthe absence of a heat supply to the ends of the multilayer vacuum insulation, the reflecting
screens (as a consequence of the large conductivity in a longitudinal direction) can be regarded as isothermal
surfaces, Therefore, determination of heat transfer is such insulations reduces to the one-dimensional
problem,
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The total heat transfer A(T, x) can be considered to be composed additively of the contributions from
the radiation A.,4(T), from the residual gas Ag of (T, x), and from the solid A (T, x)

AT, 2) = heg(T) + hg ofT, %)+ (T, %) (2)

only in the space between two adjacent screens and providing that they are separated by an "optically trans-
parent® medium, By an "optically transparent" medium we mean a material which for all practical pur-
poses does not change the magnitude of the radiative heat transfer between adjacent screens, Such mate-
rials can include, for example, glass-fiber interlayers of the types SBR-R and EVTI [5]. In the case of
small thicknesses the fiber interlayers of the indicated types will also have good gas permeability in a
transverge direction owing to their large porosity (m > 0,9).

Taking into account the above conditions, we will determine the components of Eq. (2) on the basis of
the relations
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For conduction by radiation, using the Stefan—Boltzmann equation, we obtain the relation
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Heat conduction by residual gases with consideration of Eq. (1) can be written in the form
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Conduction by the solid is determined mainly by the contact resistance of the packing material and in
the case of free laying of insulation its contribution to total heat transfer is small (to 5-10%) [2] and can be
neglected in the first approximation,

As we see from Eqs, (3) and (4), conduction by radiation and residual gases decreases with a decrease
of the characteristic dimension 6/N between adjacent surfaces, From this viewpoint it is desirable to use
fine~fiber interlayers of minimum thickness. However, the reduction in their thickness ig limited by the
need to provide sufficient thermal resistance of the material of the interlayers between the adjacent screens,

It should be noted that the conductions obtained by Eqgs. (3) and (4) have constant values in the space
between adjacent screens, This is sufficiently valid in view of the small thickness of the interlayers, Never-
thelegs, taking into account the high density of screens and their large number, we can consider the functions
describing the conductivity of the insulation and the temperature throughout its thickness as continuous and
differentiable,

Heat transfer through a porous system in the presence of mass transfer is described by the energy
equation, which in the general case for the one~dimensional steady-state problem can be written in the form
[9, 10]
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In writing Eq, (5) the terms taking into account energy dissipation due to viscosity are eliminated, since
the gas flow occurs in a molecular regime, It is easy to show that in the case in question all the remaining
terms of Eq, (5) are sufficiently small in comparison with dAdT /dx)/dx, We will estimate the orders of
magnitude of all the terms of Eq, (5). To estimate the maximum possible value of the left-hand side of the
equation, we will consider the gas pressure in the layers of insulation to be constant and equal to its maxi-
mum value, and the product pv to be equal to its maximum value on the evacuated side of the insulation
(OV)max = Wo(T)6. In this case the following relations will be valid:
ar dp
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An evaluation of these quantities shows that even for the most effective insulations with a thickness
to 10 cm, the heat transfer related with mass transfer and internal heat sources (heat of desorption of the
gases being evacuated) does not exceed 1% of the conductive heat transfer and can be neglected, Thus, for
calculating heat transfer through porous multilayer vacuum insulation under steady-state conditions we ob-
tain the equation
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Providing the density of insulation layers is constant over the entire thickness, the characteristic dimension
8/N = const and the preceding equation take the form
1
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The boundary conditions for Eq, (6) are the following:
TO) =Ty, T® =T, (7

As we see from (6), the total heat transfer A(T, x) depends on the distribution of pressure over the
thickness of the insulation p(x). In turn the pressure distribution is affected by the temperature of the
screens, since the gas evolution of materials is a function of temperature, Thus, Eq, (6) must be solved
simultaneously with the mass-transfer equation, which also describes the relation between functions p(x)
and T(x) (see (11)),

One of the possible methods of solution is the method of successive approximation; it is adequate to
take a linear distribution of temperature between T; and T, as the first approximation for finding p = p(x)
from Eq, (11). The value of p(x) obtained is substituted into (6) for refining the functional relation T (x), and
so on, We can obtain this solution in practice only with the help of numerical methods, knowing the tempera~
ture dependences of the emissivity of the reflecting screens €(T)andthe accommodation coeifficients a(T) [1,
5].

We will consider the differential equation of mass transfer corresponding to the conditions taking
place in porous multilayer vacuum insulations,

For a molecular regime, the quantity of gas passing in unit time through unit surface in the direction
of evacuation is determined according to Deryagin's theory [6] by the equation
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This expression holds in the absence of internal sources and sinks of the gas mass. In the insulation
being considered an evacuation flow is formed after removal of the original gas mass and the arrival at a
steady regime owing to gas evolution from the surface of the materials, Therefore, in Eq, (8) it is necessary

to take into account internal gas evolution, which for a unit volume of insulation can be represented in the
form

where

Wi (T) = A5 (T) Sas + Ai (T) + Svi - (9)
Mass transfer due to effugsion occurring under a molecular regime in the capillaries, as a consequence

of a temperature difference, can be neglected since this flow Qg = (82/3) (M/Zer)i/zd(p/\fT)/dx) [10] is
smaller by two orders than the filtration transfer described by Deryagm‘s formula,

On the basis of the law of conservation of mass for a gas passing through a volume element (Fig.1),
we obtain the relation

Q)+ Wy (1) dr = Q1) + 2 ar. (10)



Thus, taking into account Eq, (8), the equation of mass trans-

d . fer in porous multilayer vacuum insulations acquires the form
L Fp() 14w dpW, VTG gy ooy an
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N —)L The problem of determining heat transfer in porous multi-
/ x layer vacuum insulations, as was indicated above, reduces to the
g solution of the system of differential equations (6) and (11).
Y de A determination of the extent to which various factors affect
the magnitude and character of the pressure distribution in the
Fig.1. Gas flow through a volume ingulation layers is of great practical interest, To estimate the
element of insulation, maximum possible pressure we will consider the evacuation of in-

sulation in a thermal state, Since in this case the temperature
over the thickness of the insulation is constant, Eq, (11) acquires the form
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It has the following solution:
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To find the boundary conditions we will consider the most typical case, when evacuation of the insula-
tion occurs on one gide, I coordinate x is reckoned from the surface of the insulation on the unevacuated
gide, we obtain
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The last relation reflects the absence of a gas flow on the unevacuated gside of the insulation,
Using conditions (14), we represent Eq, (L3) in the form
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In the case of constant temperature over the thickness of the insulation, the pressure in the layers
changes according to a parabolic law with a maximum at x = 0, i.e,, on the unevacuated side of the insula-
tion, The total pressure drop Ap through the insulation is
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Thus, the pressure in the layers of insulation is determined not only by gas liberation W(T) of the
materials of the insulation but also by its structure (specific surface S, and porosity m), dimensions (thick-
ness 6), and composition of the residual gas (molecular weight M),

Actually, Eq, (16) determines the minimum attainable pressure on the unevacuated side of the insula-
tion, In this case, as we see from (15) and (16), no decrease of pressure p, whatever can effect a further
decrease of the indicated pressure p(0), which will be determined by the relation between the gas evolution
and gas permeability of the insulation structure, Equation (16) also shows that, along with the creation of
porous insulations, the use of materials with low gas evolution is an effective method of improving multi-
layer vacuum insulation,

The specific surface S, in Eq. (16) is the sum of the specific surfaces of the screens and packing
material, The specific surface of flat screens is easily calculated owing to the simplicity of their geometry,
The specific surface of fibrous structures can be found only experimentally [7] or by calculation if the fibers
have about the same thickness, In this case the specific surface of fibrous material is

4(1—
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The magnitude of the specific surface of fibrous interlayers per unit volume of insulation is deter-
mined by the expression
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Calculations carried out for insulation 10 cm thick consisting of fibrous interlayers and screens of
the same structure made from metallized fibers with a laying density of 20 screens/cm gavea value of 1 -1073
N/m? for the pressure drop through the insulation. It was assumed that Ty = 300°K, m = 0,93; Aq = A;
=1.1077 liter - torr/cm? . sec; d = 5 p; 6; = 20 L,

In real insulation the pressure distribution will have a more complex character owing to the presence
of a temperature gradient, In this case, to calculate its effectiveness it is necessary to have data on the
temperature and time dependence of the gas evolution of various materials, the composition of the gases
being evolved, the temperature dependence of emissivity and accommodation, etc, At present such data are
practically absent and considerable experimental work is necessary to determine them,
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Subscripts

NOTATION

are the specific heat fluxes transferred by radiation and residual gases;

is the reduced accommodation coefficient;

is the ratio of the specific heats at constant pressure and congtant volume;
is the universal gas constant;

is the molecular weight;

are the current temperature and the temperature of the warm and cold walls of the in-
sulation, regpectively;

is the temperature drop over the thickness of the insulation;

is the temperature difference in adjacent screens;

is the gas pressure;

is the moving coordinate over the insulation thickness;

are the coefficient of total heat conduction and conductions by radiation, gas, and solid
in each section of the insulation, respectively;

is the effective thermal conductivity of the insulation;

are the thickness and number of insulating screens, respectively;

is the Stefan—Boltzmann constant;

is the reduced emissivity of two adjacent surfaces;

is the mass flow of gas through unit surface in unit time;

is the average volume porosity of the material;

is the specific surface, i.e,, the area of all surfaces per unit volume;

is the gas evolution per unit volume of insulation in unit time;

is the mass rate of gas evolution per unit surface;

is the diameter of fibers;

is the thickness of interlayers;

is the gas density;

is the gas velocity;

is the heat of desorption of gas;

is the average size of pores;

is the pressure maintained on evacuated side of ingulation,

s is the screen;
i is the interlayer.
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