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A s y s t e m  of differential  equations descr ib ing  heat  and m a s s  t r a n s f e r  under  s t eady- s t a t e  con-  
ditions in porous  vacuum insulations is obtained and the method of their  solution is d i scussed .  
The effect  of var ious  f ac to r s  on heat  t r a n s f e r  by gases  in such porous  media  is shown. 

An analysis  of the mechan i sm of heat  t r an s f e r  in mul t i l ayer  vacuum insulation consis t ing of a luminum 
foil and glass  in t e r l aye r s  showed that, with f ree  laying of the insulation, the t r a n s f e r  of heat  by res idua l  gas 
molecules  located between the l aye r s  of insulation const i tutes  an apprec iable  por t ion  (up to 70-80%) of the 
total  heat  flux even at a p r e s s u r e  below 1 �9 10-3-1 �9 10 -4 N / m  2 in the space  surrounding the insulat ion [1, 2]. 
The p r e sence  of res idual  gas in the l aye r s  of insulation is due to the dynamic equi l ibr ium of the p r o c e s s e s  
of evacuat ion and of gas l ibera t ion f r o m  the su r faces  of the insulating m a t e r i a l s .  

At a p r e s s u r e  around the insulation of l e s s  than 1 �9 10 -e N / m  e the p r e s s u r e  inside it is usual ly  no 
higher  than 1 N / m  e [1, 2, 8]. Since the distance between individual su r faces  in such insulat ion is l ess  than 
0.5 m m ,  the flow of gas through porous  insulation is molecu la r  in nature .  If follows f r o m  the kinetic gas 
theory that,  for  a molecu la r  mechan i sm,  the heat  t r ans f e r  by a gas between two adjacent  su r faces  is p r o -  
port ional  to its p r e s s u r e  [3]: 

qg= 2 - a ~  ~, 2aMT ] ATip(x)" (1) 

The gas p r e s s u r e  in the insulation l aye r s  can be reduced both by dec reas ing  the evolution of gas f r o m  
the insulating m a t e r i a l s  and by improving the conditions of their  evacuat ion by construct ional  methods.  The 
la t te r  includes pe r fo ra t ion  of the ref lec t ing sc reens  or their  manufac ture  in the f o r m  of porous  s t ruc tu r e s ,  
for  example ,  f r o m  meta l l ic  or  meta l l ized  f ibers  [4, 5]. It is comple te ly  obvious that the packing ma te r i a l  
between the s c r eens  should also have good pe rmeab i l i t y  for  gas molecu les .  The insulation produced by such 
methods can be r ega rded  as a porous  s t ruc tu re  p e r m e a b l e  for  gas in a di rect ion perpendicu la r  to the s u r -  
face  of the s c r e e n s .  

Insulation with pe r fo ra t ed  sc reens  can be regarded  as a porous  medium only when the dis tances  b e -  
tween the holes a re  suff icient ly smal l  (at l eas t  commensurab le  with the dis tances  between screens)  so that 
its gas pe rmeab i l i t y  is comparab le  to the gas pe rmeab i l i t y  of the f ibrous packing m a t e r i a l .  It should be 
noted, however ,  that the construct ion of the ref lec t ing sc reens  in this case  should be such that the t r a n s m i s -  
sion of radia t ion by them is min imum.  

It is known that in the insulations being considered three  modes of heat  t r a n s f e r  - radiat ion,  conduc- 
tion by the gas,  and conduction by the solid - act s imul taneously ,  the f rac t ion  of each vary ing  f r o m  sc r een  
to s c r een .  In the absence  of a heat  supply to the ends of the mul t i layer  vacuum insulation, the ref lec t ing 
sc reens  (as a consequence of the la rge  conductivity in a longitudinal direction) can be r ega rded  as i so thermal  
su r f aces .  The re fo re ,  de terminat ion of heat  t r an s f e r  is such insulations reduces  to the one-dimensional  
p rob l em.  
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The total heat  t r a n s f e r  )~(T, x) can be cons idered  to be composed  addit ively of the contr ibutions f r o m  
the radia t ion Xrad(T), f r o m  the res idua l  gas ~tg~ x), and f r o m  the solid 7t s (T, x) 

,~ (T, x) = ,~rad(T) + ~.g. el(T, x) + ~ s(T, x) (2) 

only in the space  between two adjacent  s c r eens  and providing that they are  sepa ra ted  by an "optical ly t r a n s -  
paren t"  medium.  By an "optical ly t r anspa ren t "  medium we mean a ma te r i a l  which for  all p rac t i ca l  p u r -  
poses  does not change the magnitude of the radia t ive  heat  t r an s f e r  between adjacent s c r e e n s .  Such m a t e -  
r i a l s  can include, for  example ,  g l a s s - f i b e r  i n t e r l aye r s  of the types SBR-R and EVTI [5]. In the case  of 
smal l  th icknesses  the f iber  i n t e r l aye r s  of the indicated types will also have good gas pe rmeab i l i t y  in a 
t r a n s v e r s e  d i rec t ion owing to their  l a rge  po ros i ty  (m > 0.9). 

Taking into account the above conditions, we will de te rmine  the components  of Eq. (2) on the bas i s  of 
the re la t ions  

~'rad = qr a d ~ ,  ~g.ef~ qg6 
ATIN AT~N 

For  conduction by radiat ion,  us ing the S t e f a n - B o l t z m a n n  equation, we obtain the re la t ion  

"~rad(T) = 4crete (T) 7 3 6_5_. (3) 
N 

Heat  conduction by res idua l  gases  with considera t ion  of Eq. (1) can be wri t ten  in the f o r m  

1 a '~ + 1 /~ ~i/2 6 (4) 
)~g.ef~T, x) = -~- o~i~ 1 ( ~ - ]  p(x) ~ - .  

Conduction by the solid is de te rmined  mainly by the contact  r e s i s t a n c e  of the packing ma te r i a l  and in 
the case  of f r ee  laying of insulat ion its contr ibution to total heat t r a n s f e r  is smal l  (to 5-10%) [2] and can be 
neglected in the f i r s t  approx imat ion .  

As we see  f r o m  Eqs.  (3) and (4), conduction by radia t ion and res idual  gases  d e c r e a s e s  with a dec rease  
of the cha r ac t e r i s t i c  d imension 8/N between adjacent  s u r f a c e s .  F r o m  this viewpoint it is des i rab le  to use  
f ine - f ibe r  i n t e r l aye r s  of min imum th ickness .  However ,  the reduct ion in their  thickness is l imi ted by the 
need to provide  sufficient the rma l  r e s i s t a n c e  of the ma te r i a l  of the in te r l aye r s  between the adjacent  s c r e e n s .  

It shouId be noted that the conductions obtained by Eqs.  (3) and (4) have constant  values in the space 
between adjacent  s c r e e n s .  This  is suff iciently valid in view of the smal l  thickness of the i n t e r l a y e r s .  N e v e r -  
the less ,  taking into account the high densi ty  of s c r eens  and their  l a rge  number ,  we can consider  the functions 
descr ib ing  the conductivi ty of the insulat ion and the t e m p e r a t u r e  throughout its thickness as continuous and 
dff ferent iable .  

Heat t r a n s f e r  through a porous  s y s t e m  in the p r e sence  of mass  t r an s f e r  is descr ibed  by the energy  
equation, which in the genera l  case  for  the one-d imens ional  s t eady- s t a t e  p rob lem can be wr i t ten  in the f o r m  
[9, 10] 

dT dp d ( d T )  rd(Pv) pvcp - -  --  v - ~, + . (5) 
dx dx dx ~ x  dx 

In wri t ing Eq. (5) the t e r m s  taking into account energy  diss ipat ion due to v i scos i ty  a re  e l iminated,  s ince 
the gas flow occurs  in a molecu la r  r eg i m e .  It is e a sy  to show that in the ease  in question all the remain ing  
t e r m s  of Eq. (5) a re  sufficiently smal l  in compar i son  wi thd(adT/dx) /dx .  We will e s t ima te  the o r d e r s  of 
magnitude of all the t e r m s  of Eq. (5)~ To e s t ima te  the m a x i m u m  poss ib le  value of the lef t -hand side of the 
equation, we will cons ider  the gas p r e s s u r e  in the l aye r s  of insulation to be constant and equal to its max i -  
mum value,  and the product  pv to be equal to its max imum value on the evacuated side of the insulation 
(PV)ma x = W0(Tt)5. In this ease  the following re la t ions  will be valid:  

d T _  v dp < c~,ATW ~ (T~), 
pVCp dx dx 

r d (pv) < r~o (r~), 
dx 

d dT  ,fAT 
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An evaluation of these  quantit ies shows that even for  the most  effective insulations with a thickness 
to 10 cm,  the heat  t r an s f e r  re la ted  with m a s s  t r ans f e r  and internal  heat  sources  (heat of desorpt ion of the 
gases  being evacuated) does not exceed 1% of the conductive heat  t r a n s f e r  and can be neglected.  Thus,  for  
calculat ing heat  t r an s f e r  through porous  mul t i layer  vacuum insulation under  s t eady- s t a t e  conditions we ob-  
tain the equation 

l 

Providing the densi ty of insulation l a y e r s  is constant over  the ent i re  thickness ,  the cha rac t e r i s t i c  d imension 
5/N = const and the p reced ing  equation take  the f o r m  

I 

dT._T_[4~ere(T) T3~_ 1 a v~- 1 (6) 

The boundary conditions for  Eq. (6) a re  the following: 

T ( 0 ) = T  1, T(6) = T  r (7) 

As we see f r o m  (6), the total  heat  t r ans f e r  X(T, x) depends on the dis tr ibut ion of p r e s s u r e  over  the 
thickness  of the insulation p(x). In turn the p r e s s u r e  dis tr ibut ion is affected by the t empe ra tu r e  of the 
s c r e e n s ,  s ince the gas evolution of ma te r i a l s  is a function of t e m p e r a t u r e .  Thus,  Eq. (6) must  be solved 
s imul taneous ly  with the m a s s - t r a n s f e r  equation, which also desc r ibes  the re la t ion  between functions p(x) 
and T(x) (see (11)). 

One of the poss ib le  methods of solution is the method of success ive  approximation;  it is adequate to 
take a l inear  dis t r ibut ion of t empe ra tu r e  between T t and T 2 as the f i r s t  approximat ion for  finding p = p(x) 
f r o m  Eq. (11). The value of p(x) obtained is subst i tuted into (6) for  ref ining the functional re la t ion  T(x), and 
so on. We can obtain this solution in p rac t i ce  only with the help of numer ica l  methods,  knowing the t e m p e r a -  
ture  dependences of the emi s s iv i t y  of the ref lect ing sc reens  e(T)andthe  accommodat ion  coeff icients  a(T) [1, 

5]. 

We will consider  the different ia l  equation of m a s s  t r a n s f e r  cor responding  to the conditions taking 
place  in porous  mul t i l ayer  vacuum insulat ions.  

For  a molecu la r  r eg ime ,  the quantity of gas pass ing  in unit t ime through unit su r face  in the d i rec t ion 
of evacuat ion is de te rmined  according  to Deryag in ' s  theory  [6] by the equation 

k dp (x) (8) 

Q l/T- dx 

where  

24 - f  2 ra ~ 
k = ~ V ~MR S0 

This  express ion  holds in the absence  of internal  sources  and sinks of the gas m a s s .  In the insulation 
being cons idered  an evacuat ion flow is fo rmed  af ter  r emova l  of the or iginal  gas  m a s s  and the a r r iva l  at a 
s teady r eg ime  owing to gas evolution f r o m  the sur face  of the m a t e r i a l s .  The re fo re ,  in Eq. (8) it is n e c e s s a r y  
to take into account in ternal  gas evolution, which for  a unit volume of insulation can be r e p r e s e n t e d  in the 
f o r m  

Wo(T) ~ As (T) SQ s 4,- A t (T) -~- Sv i �9 (9) 

Mass  t r an s f e r  due to effusion occur r ing  under  a molecu la r  r eg ime  in the cap i l l a r i e s ,  as  a consequence 
of a t e m p e r a t u r e  difference,  can be neglected since this flow (Qs = (8l/3)(M/2~R)i/2 d(p/V-T)/dx) [10] is 
s m a l l e r  by two o rde r s  than the f i l t ra t ion t r ans f e r  descr ibed  by Deryagin '  s fo rmula .  

On the bas i s  of the law of conservat ion  of m a s s  for  a gas pass ing  through a volume e lement  (Fig. l ) ,  
we obtain the re la t ion  

dq (x) dx. (1 O) Q (x) + tVo (T) dx = q (x) + 
dx 
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Fig.  1. Gas flow through a volume 
e lement  of insulation. 

Thus,  taking into account Eq. (8), the equation of m a s s  t r a n s -  
f e r  in porous  m u l d l a y e r  vacuum insulations acqui res  the f o r m  

#p(x) 1 dT(x), dp(x)+ V T ( x )  Wo(T ) = 0. (11) 
dx 2 2T (x) dx dx k 

The p rob l em of de te rmin ing  heat t r an s f e r  in porous  mul t i -  
l aye r  vacuum insulat ions,  as was indicated above,  r educes  to the 
solution of the s y s t e m  of different ial  equations (6) and (11). 

A de termina t ion  of the extent to which var ious  fac to r s  affect  
the magnitude and c h a r a c t e r  of the p r e s s u r e  dis t r ibut ion in the 
insulat ion l aye r s  is of g rea t  p rac t i ca l  in te res t .  To es t ima te  the 
m a x i m u m  poss ib le  p r e s s u r e  we will cons ider  the evacuat ion of in- 
sulat ion In a t he rma l  s ta te .  Since in this case  the t e m p e r a t u r e  

over  the thickness of the insulation is constant ,  Eqo (11) acqui res  the f o r m  

d~p (x) ]flkT_~ 1 dx~ + - -  Wo (T1) = O. (12) 

It has the following solution: 

p (x) = - -  V T1 x 2 
k Wo (T1) -g -  + :ix + c~. (13) 

To find the boundary  conditions we will cons ider  the mos t  typical  case ,  when evacuat ion of the insu la-  
tion occurs  on one s ide .  If coordinate  x is reckoned f r o m  the su r face  of the insulation on the unevacuated 
s ide,  we obtain 

dp (x) = O. (14) 
p (6) = Po, dx x=0 

The las t  r e la t ion  re f l ec t s  the absence  of a gas flow on the unevaeuated side of the insulation. 

Using conditions (14), we r e p r e s e n t  Eq. (13) in the f o r m  

p (x) = Po + 48 V - ~  V ~  Wo (T1) (69- x~). (15) 

In the case  of constant  t e m p e r a t u r e  over  the thickness of the insulation, the p r e s s u r e  in the l a y e r s  
changes according  to a parabol ic  law with a m a x i m u m  at x = 0, i .e. ,  on the unevacuated side of the insula-  
tion. The total p r e s s u r e  drop Ap through the insulat ion is 

1 3 V - ~ R T  SoW o (T~) 6~" (16) 
AR = p (0) - -  Po - -  4 8  V 2  rn 2 

Thus,  the p r e s s u r e  in the l a y e r s  of insulat ion is de te rmined  not only by gas l ibera t ion  W0(T ) of the 
m a t e r i a l s  of the insulation but a lso  by its s t ruc tu re  (specific sur face  S O and poros i ty  m),  d imensions  (thick- 
ness  ~), and composi t ion  of the res idua l  gas  (molecular  weight M). 

Actually,  Eq. (16) de t e rmines  the min imum at ta inable  p r e s s u r e  on the unevacuated side of the insu la-  
tion. In this case ,  as we see  f r o m  (15) and (16), no dec r ea se  of p r e s s u r e  P0 wha tever  can effect  a fu r the r  
d e c r e a s e  of the indicated p r e s s u r e  p(0), which will be de te rmined  by the re la t ion  between the gas evolution 
and gas pe rmeab i l i t y  of the insulat ion s t r u c t u r e .  Equation (16) a lso  shows that, along with the c rea t ion  of 
porous  insulat ions,  the use  of m a t e r i a l s  with low gas evolution is an effect ive method of improving  mul t i -  
l aye r  vacuum insulation.  

The specif ic  su r face  S o in Eq. (16) is the sum of the specif ic  su r faces  of the s c r eens  and packing 
m a t e r i a l .  The specif ic  su r face  of f lat  s c r e e n s  is ea s i ly  calcula ted owing to the s impl ic i ty  of their  g e o m e t r y .  
The speci f ic  su r face  of f ibrous  s t r u c t u r e s  can be found only exper imenta l ly  [7] or  by calculat ion if the f ibe r s  
have about the s ame  th ickness .  In this case  the speci f ic  su r face  of f ibrous  ma te r i a l  i s  

Si - 4(I - -m)  
d (17) 
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The magnitude of the specif ic  sur face  of f ibrous in t e r l aye r s  pe r  unit volume of insulation is d e t e r -  
mined by the express ion  

S v  i = 4 (1 - -  m) 6iN (18) 
d8 

Calculat ions c a r r i e d  out for  insulation 10 c m  thick consis t ing of f ibrous  in te r l aye r s  and sc reens  of 
the s ame  s t ruc tu re  made f r o m  meta l l ized  f ibers  with a laying densi ty of 20 s c r e e n s / c m  gave a value of 1 �9 10 -3 

N / m  2 for  the p r e s s u r e  drop through the insulation. It was a s sumed  that T t = 300~.:, m = 0.93; A s = A i 
= 1 �9 10 -T l i t e r ,  t o r r / c m  2 �9 sec;  d = 5 tt; 6 i = 20 it. 

In rea l  insulation the p r e s s u r e  dis tr ibut ion will have a m o r e  complex c h a r a c t e r  owing to the p r e sen ce  
of a t e m p e r a t u r e  gradient .  In this case ,  to calculate  its e f fec t iveness  it is n e c e s s a r y  to have data on the 
t e m p e r a t u r e  and t ime  dependence of the gas evolution of va r ious  ma te r i a l s ,  the composi t ion  of the gases  
being evolved,  the t empe ra tu r e  dependence of emi s s iv i t y  and accommodat ion ,  e tc .  At p re sen t  such data a r e  
p rac t i ca l ly  absent  and cons iderable  exper imenta l  work  is n e c e s s a r y  to de te rmine  them.  

qrad, qg 
a o 

= %/c v 
R 
M 
T,  T1, T 2 

AT = T 1 - T  2 
AT i 
P 
X 

~t, )trad, ~'g.ef' ~ts 

~'ef 
6 ,N 
O" 

'P-'re 
Q 
m 

So 
Wo 
A 
d 

P 
V 

r 

l 

Po 

N O T A T I O N  

a re  the specif ic  heat  fluxes t r a n s f e r r e d  by radia t ion and res idua l  gases ;  
is the reduced accommodat ion  coefficient;  
is the ra t io  of the specif ic  heats  at constant p r e s s u r e  and constant volume; 
is the un ive r sa l  gas constant;  
is the molecu la r  weight; 
a r e  the cur ren t  t e m p e r a t u r e  and the t e m p e r a t u r e  of the w a r m  and cold walls  of the in-  
sulation,  r espec t ive ly ;  
is the t e m p e r a t u r e  drop over  the thickness of the insulation; 
is the t e m p e r a t u r e  difference in adjacent  s c reens ;  
is the gas p r e s s u r e ;  
is the moving coordinate ove r  the insulation thickness;  
a r e  the coefficient  of total heat  conduction and conductions by radiat ion,  gas,  and solid 
in each sect ion of the insulation, respec t ive ly ;  
is the effect ive the rmal  conductivity of the insulation; 
a r e  the thickness and number  of insulat ing s c r eens ,  respec t ive ly ;  
is the S t e f an -B o l t zm ann  constant;  
Is the reduced emiss iv i ty  of two adjacent  su r faces ;  
is the m a s s  flow of gas through unit su r face  in unit t ime;  
is the ave rage  volume poros i ty  of the mate r ia l ;  
is the specif ic  su r face ,  i .e . ,  the a r e a  of all  su r faces  pe r  unit volume; 
is the gas evolution pe r  unit volume of insulation in unit t ime; 
is the mass  ra te  of gas evolution pe r  unit sur face ;  
is the d i ame te r  of f ibers ;  
ts the thickness of in t e r l aye r s ;  
~s the gas density; 
Is the gas velocity;  
ts the heat of desorpt ion of gas; 
ts the ave rage  s ize  of pores ;  
is the p r e s s u r e  maintained on evacuated side of insulation. 

S u b s c r i p t s  

s is the sc reen ;  
i is the in te r l aye r .  
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